Non-convex Sparse Regularization

نویسنده

  • Markus Grasmair
چکیده

We study the regularising properties of Tikhonov regularisation on the sequence space l with weighted, non-quadratic penalty term acting separately on the coefficients of a given sequence. We derive sufficient conditions for the penalty term that guarantee the well-posedness of the method, and investigate to which extent the same conditions are also necessary. A particular interest of this paper is the application to the solution of operator equations with sparsity constraints. Assuming a linear growth of the penalty term at zero, we prove the sparsity of all regularised solutions. Moreover, we derive a linear convergence rate under the assumptions of even faster growth at zero and a certain injectivity of the operator to be inverted. These results in particular cover non-convex lp regularisation with 0 < p < 1. MSC: 65J20,47A52;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Bregman Distances and Convergence Rates for Non-convex Regularization Methods

We generalize the notion of Bregman distance using concepts from abstract convexity in order to derive convergence rates for Tikhonov regularization with non-convex regularization terms. In particular, we study the non-convex regularization of linear operator equations on Hilbert spaces, showing that the conditions required for the application of the convergence rates results are strongly relat...

متن کامل

Multi-stage Convex Relaxation for Learning with Sparse Regularization

We study learning formulations with non-convex regularizaton that are natural for sparse linear models. There are two approaches to this problem: • Heuristic methods such as gradient descent that only find a local minimum. A drawback of this approach is the lack of theoretical guarantee showing that the local minimum gives a good solution. • Convex relaxation such as L1-regularization that solv...

متن کامل

Analysis of Multi-stage Convex Relaxation for Sparse Regularization

We consider learning formulations with non-convex objective functions that often occur in practical applications. There are two approaches to this problem: • Heuristic methods such as gradient descent that only find a local minimum. A drawback of this approach is the lack of theoretical guarantee showing that the local minimum gives a good solution. • Convex relaxation such as L1-regularization...

متن کامل

Nonconvex Weighted ℓp Minimization Based Group Sparse Representation Framework for Image Denoising

Nonlocal image representation or group sparsity has attracted considerable interest in various low-level vision tasks and has led to several state-of-the-art image denoising techniques, such as BM3D, LSSC. In the past, convex optimization with sparsity-promoting convex regularization was usually regarded as a standard scheme for estimating sparse signals in noise. However, using convex regulari...

متن کامل

Efficient Sparse Recovery via Adaptive Non-Convex Regularizers with Oracle Property

The main shortcoming of sparse recovery with a convex regularizer is that it is a biased estimator and therefore will result in a suboptimal performance in many cases. Recent studies have shown, both theoretically and empirically, that non-convex regularizer is able to overcome the biased estimation problem. Although multiple algorithms have been developed for sparse recovery with non-convex re...

متن کامل

Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations

The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009